В.В.ГУЛУНОВ (ООО «СКВ Стройприбор», Челябинск), Современные методы и средства неразрушающего контроля качества бетонных и железобетонных конструкций

Качество бетонных и железобетонных изделий и конструкций в значительной степени зависит от эффективности и действенности контроля прочности и однородности бетона, защитного слоя бетона и расположения арматуры, напряжений в арматуре предварительно напряженных железобетонных конструкций.

Определение прочности бетона может производиться стандартными методами [1] путем изготовления и испытания образцов, однако достоверность контроля его прочности и однородности по стандартным образцам является недостаточной в силу ряда причин: объем испытания стандартных образцов не превышает 0,01 % уложенного в конструкцию бетона, условия виброформования и режимы твердения образцов и конструкций различны, стандартными методами невозможно определить однородность бетона в изделии и прочность отдельных его участков. При обследовании конструкций зданий и сооружений стандартные методы испытания бетона вообще неприменимы.

Перечисленные недостатки стандартных методов испытания прочности бетона обусловили развитие неразрушающих методов контроля и методов, связанных с испытаниями бетона в нестандартных образцах, извлекаемых из конструкции.

Примером эффективного применения приборов неразрушающего контроля (НК) может служить контроль прочности и однородности бетона в изделиях кассетного производства ЗЖБИ Главюжуралстроя при выявлении причины вытягивания монтажных петель в процессе извлечения внутренних стеновых панелей из кассетных установок и их транспортировки.

По данным лаборатории, прочность бетона контрольных кубов на момент распалубки соответствовала нормируемой отпускной прочности 14,8 МПа. Расследование аварийной ситуации показало, что причиной является пониженная прочность бетона в зоне анкеровки монтажных петель (конструкция петель и длина зоны анкеровки соответствовали проекту).

Проверку прочности бетона отдельных участков производили в верхней, нижней и средней частях каждого изделия приборами Бетон-12 (при поверхностном прозвучивании) и ИПС-МГ4 (градуировочная зависимость прибора уточнялась по контрольным кубам). В результате было установлено, что средняя прочность бетона участков по высоте изделий составила 9,2 МПа (верх), 13,7 МПа (середина) и 16,4 МПа (низ), а скорость распространения УЗК составила от 3270 м/с (верх) до 3820 м/с (низ). Очевидно, что прочность бетона в изделиях кассетного производства, определяемая по контрольным образцам, существенно отличается от фактической прочности наиболее ответственных участков изделий, что может приводить к выпуску некачественной продукции и аварийным ситуациям.

Неразрушающий контроль отпускной и передаточной прочности бетона позволяет оперативно влиять на технологический процесс производства железобетонных изделий, своевременно корректировать состав, режимы виброуплотнения и термообработки бетона.

Для неразрушающего контроля прочности бетона используются приборы, основанные на методах местных разрушений (отрыв со скалыванием, скалывание ребра, отрыв стальных дисков), ударного воздействия на бетон (ударный импульс, упругий отскок, пластическая деформация) и ультразвукового прозвучивания.

При обследовании монолитных конструкций и больших массивов бетона применение ударно-импульсных и ультразвуковых приборов должно сочетаться с испытаниями бетона методами отрыва со скалыванием, скалывания ребра [2] или отбора образцов (кернов) [3].

При выборе методов НК и приборов для проведения испытаний бетона пользователь должен знать их особенности и рекомендуемые области применения.

Достаточно полно методы НК классифицированы Б.Г. Скрамтаевым и М.Ю. Лещинским, М.Г. Коревицкой [4, 5], в их работах даны рекомендации по выбору методов и средств НК в зависимости от вида контролируемого изделия и условий его эксплуатации. Однако современная приборная база НК существенно отличается от рекомендуемой названными авторами.

С начала 90-х годов прошлого столетия активно ведется разработка и производство приборов НК нового поколения с применением электроники и микропроцессорной техники, наращиваются их функциональные возможности.

Особого внимания заслуживают методы отрыва со скалыванием, скалывания ребра и отрыва стальных дисков, которые часто называют методами местных разрушений. Эти методы характеризуются большей точностью по сравнению с другими методами неразрушающего контроля.

Приборы, основанные на методах местных разрушений, применяются в основном в монолитном домостроении и при обследовании конструкций зданий и сооружений. Недостатки этих методов, обусловленные повышенной трудоемкостью и необходимостью определения оси арматуры и глубины ее залегания, ограничивают их применение определением прочности бетона отдельных конструкций или их участков, а также уточнением градуировочных зависимостей ультразвуковых и ударно-импульсных приборов в соответствии с Приложением 9 [2].

Основные объемы НК прочности бетона выполняются, как правило, высокопроизводительными приборами после установления корреляции их косвенной характеристики (базовой зависимости) с фактической прочностью контролируемого бетона. Применение приборов, имеющих большой объем памяти, интерфейс с

ПК и функции уточнения и корректировки градуировочных характеристик, маркировки измерений типом контролируемого изделия, значительно облегчает документирование и последующую обработку результатов измерений.

Наиболее сложными для контроля бетона конструкций являются случаи воздействия на него агрессивных факторов: химических (соли, кислоты, масла и др.), термических (высокие температуры, замораживание в раннем возрасте, либо переменное замораживание и оттаивание в водонасыщенном состоянии), атмосферных (карбонизация поверхностного слоя). Эти факторы воздействуют в первую очередь на поверхностные слои бетона, в связи с чем при обследовании необходимо визуально, простукиванием, либо смачиванием раствором фенолфталеина (случаи карбонизации бетона) выявить поверхностный слой с нарушенной структурой.

Подготовка бетона таких конструкций для испытаний неразрушающими методами заключается в удалении поверхностного слоя на участке контроля и зачистке поверхности наждачным камнем. Прочность бетона конструкций в этих случаях необходимо определять преимущественно приборами, основанными на методах местных разрушений, либо путем отбора образцов. При использовании же ударно-импульсных и ультразвуковых приборов контролируемая поверхность должна иметь шероховатость не более Ra 25, а градуировочные характеристики приборов уточнены.

Пользователь должен знать, что базовая, либо типовая градуировочная зависимость, с которой может поставляться прибор, с достаточной степенью точности воспроизводит прочность бетона того вида (класса), на котором прибор калибровался. Изменение вида крупного заполнителя. влажности, возраста бетона и условий его твердения приводит к увеличению погрешности измерений. Для ультразвуковых приборов перечень факторов, влияющих на точность измерений, еще шире [6].

Экспериментальные исследования, проводившиеся с целью установления корреляции косвенной характеристики приборов типа ИПС, откалиброванных на бетонах с гранитным щебнем, с прочностью бетона, изготовленного на других видах крупного заполнителя (гравий, граншлак, известняк, керамзит, речной песок), показали, что погрешность определения прочности бетона может достигать 27% (керамзитобетон). Влияние возраста (до 100 сут) и условий твердения бетона не столь существенны и могут составлять 4-6% измеряемого значения прочности. Контроль влажных поверхностей (для тяжелых бетонов с влажностью более 2-3%) может приводить к занижению показаний приборов до 10-15%.

СКВ Стройприбор производит сертифицированные приборы типов ПОС-50МГ4, ПОС-ЗОМГ4«Скол» и ПОС-50МГ4«Скол», обеспечивающие испытание бетона методами отрыва со скалыванием, скалывания ребра и отрыва стальных дисков, а также приборы типов ИПС-МГ4.01, ИПС- МГ4.03, реализующие метод ударного импульса, и прибор ПОС-2МГ4П, предназначенный для испытания ячеистых бетонов методом вырыва спирального анкера.

Приборы типа ПОС состоят из силовозбудителя и электронного блока и комплектуются анкерами типа II 024x30 мм, 024x48 мм и 016x35 мм с предельным усилием вырыва 30 кН (ПОС-ЗО) и 50 кН (ПОС-50), что позволяет производить испытание бетона прочностью до 100 МПа. Погрешность определения усилия - не более ± 2%.

Прибор ПОС-50МГ4-Р может оснащаться малогабаритным червячным редуктором, обеспечивающим равномерное нагружение анкера и малое усилие на рукояти. Комплектуется устройством для испытаний методом скалывания ребра конструкций с гранью до 450 мм (модификация ПОС-50МГ4«Скол»). Прибор ПОС- 50МГ4-2 имеет две опоры, минимальные массогабаритные характеристики и может применяться для испытания бетона изделий цилиндрической формы, когда применение трехопорных приборов ограничено. Прибор ПОС-бОМГ4-3 трехопорный с подъемным силовозбудителем имеет малые габариты и массу. Испытания методом отрыва со скалыванием должны производиться в соответствии с рекомендациями [2, 7].

Испытания бетона методом отрыва стальных дисков могут производиться любым из приборов ПОС- 30(50)МГ4, либо адгезиметром типа ПСО-10МГ4 с предельным усилием отрыва 10 кН (производятся СКБ Стройприбор). Метрологические характеристики приборов типа ПОС и ПСО обеспечиваются образцовыми динамометрами типа ДОРМ на 10, 30 и 50 кН.

Определение глубины залегания арматуры и ее расположение в бетоне при подготовке к испытаниям методом отрыва со скалыванием должно производиться измерителями защитного слоя бетона, например ИПА- МГ4, имеющим диапазон определения защитного слоя 3...80 мм в стержнях диаметром 3...40 мм, с погрешностью до ± 7%.

Для контроля прочности ячеистых бетонов в диапазоне 0.5...8 МПа разработан прибор ПОС-2МГ4-П, основанный на методе вырыва спирального анкера. Прибор обеспечивает испытания бетона с предельным усилием вырыва 2 кН (погрешность до ± 3%). Установка анкера осуществляется специальным устройством, обеспечивающим постоянный шаг ввинчивания в тело бетона. Все приборы имеют автономное питание, связь с ПК и энергонезависимую память.

В отличие от методов местных разрушений приборы, основанные на ударно-импульсном воздействии на бетон, имеют значительно большую производительность, однако контроль прочности бетона ведется в поверхностном слое толщиной 25...30 мм, что ограничивает их применение. В упомянутых выше случаях необходима зачистка поверхности контролируемых участков бетона или удаление поврежденного поверхностного слоя.

Применение ударно-импульсных приборов для НК прочности и однородности бетона в возрасте до 100 сут не вызывает особых сложностей, если контролируемые поверхности образованы металлической опалубкой. НК прочности бетона на заводах ЖБИ и в строительных лабораториях, как правило, осуществляется после приведения градуировочных зависимостей приборов в соответствие с фактической прочностью бетона по результатам испытания контрольных партий кубов в прессе.

Подобные испытания прибора ИПС-МГ4.03 проводились в НТЦ «Качество» (г.Николаев, Украина) на кубах из тяжелого бетона класса В25 (шесть серий по три куба). По результатам испытаний был установлен коэффициент совпадения Кс=0,84 используемой градуировочной зависимости (тяжелый бетон на граните, возраст 28 сут, ТВО). Фактическая прочность бетона в сериях составила 32,8...38,9 МПа и соответствовала заявленному классу бетона при коэффициенте вариации 13,5%.

Полученный коэффициент Кс был введен в программное устройство прибора нажатием соответствующих кнопок клавиатуры, и испытания были продолжены на двух контрольных сериях образцов с целью проверки уточненной градуировочной зависимости. Прибор воспроизвел прочность бетона с погрешностью 1,2 и 3,1% соответственно. Осмотр разрушенных кубов всех серий показал наличие в растворной части бетона многочисленных глинистых включений размером до 10...12 мм.

Описанный случай является достаточно редким (при правильно выбранной градуировочной зависимости Кс в основном варьируется в пределах 0,88... 1.12) и объясняется применением при изготовлении бетона некачественного песка с большим содержанием глинистых включений.

Применение же ударно-импульсных и ультразвуковых приборов на объектах строительства и при обследовании эксплуатируемых конструкций. когда нет возможности уточнить градуировочную зависимость испытанием кубов в прессе, сопряжено с существенными ошибками при определении прочности бетона. Приборы отрыва со скалыванием в таких случаях являются предпочтительными.

Опыт ведущих специалистов по НК прочности бетона показывает, что в их базовый комплект должны входить приборы, основанные на разных методах контроля: отрыв со скалыванием (скалывание ребра), ударный импульс (упругий отскок, пластическая деформация), ультразвук, а также измерители защитного слоя и влажности бетона, оборудование для отбора образцов из конструкции.

Разработанные СКБ Стройприбор новые измерители прочности бетона ИПС-МГ4.01 и ИПС-МГ4.03 являются дальнейшим развитием базовой модели ИПС-МГ4, выпускавшейся с 1994 г.

Приборы предназначены для оперативного контроля прочности бетона в диапазоне 3...100 МПа при изготовлении сборных железобетонных конструкций и при обследовании конструкций зданий и сооружений.

Бетон и железобетон, 2005 №4