Сульфатостойкие портландцементы
Технологическая схема производства сульфатостойких портландцементов не отличается от технологии получения портландцемента, однако при их выпуске осуществляется особо строгий производственный контроль. При подборе химико-минералогического состава сульфатостойкого портландцемента учитывали результаты
исследований коррозиеустойчивости цементов различного состава при твердении в агрессивных средах.
Для повышения стойкости цемента при действии сульфатных растворов большое значение имеет минералогический состав исходного клинкера. Исследования показали, что сульфатостойкость портландцемента достигается при пониженном содержании С3А и умеренном количестве C3S. Исследовалась коррозиеустойчивость синтетических клинкерных минералов в растворах сульфатов натрия, кальция и магния; показателем явилось время, необходимое для получения опасного расширения до 0,5% особо тощих цементных растворов состава.
Установлено также, что положительное влияние на сульфатостойкость оказывает добавка 10% трепела. Можно видеть, однако, что одно лишь понижение содержания С3А в исходном клинкере не обеспечивает сульфатостойкость портландцемента. Это объясняется тем, что при низком содержании С3А в цементе возможна не только гидросульфоалюминатная, но и гипсовая коррозия, поскольку гидратация C3S приводит к образованию значительного количества гидроксида кальция, создающего благоприятные условия для кристаллизации гипса. Так, например, цемент, содержащий 41% C3S и 5% С3А (без добавки трепела) обнаруживает при твердении в растворе сульфата натрия с концентрацией до 4000 мг/л большую коррозиеустойчивость, чем цемент с 3% С3А и 52% C3S, а также с 4% С3А и 48% C3S. Поэтому для снижения химической агрессии важно также по возможности уменьшать содержание C3S.
Известное значение имеет количество C4AF. Если его много, то цемент оказывается чувствительным к действию сульфатов, но он, несомненно, более устойчив, чем кристаллический С3А. При нормировании состава сульфатостойкого портландцемента необходимо также учитывать и то, что он должен обладать повышенной морозостойкостью и пониженной экзотермией. При оценке сопротивляемости цементов попеременному действию замораживания и оттаивания при наличии сульфатной агрессии следует учитывать, что при испытаниях оттаивание образцов в агрессивной среде резко снижает показатели моростойкости. Так, например, наши исследования показали, что образец портландцементпого раствора 1:3 при оттаивании в пресной воде выдерживает более 200 циклов, а при оттаивании в морской — только 30 циклов.
В теплом климате, где морозостойкость не играет заметной роли, в зонах бетона, находящихся в переменном уровне воды, происходит попеременное насыщение агрессивной водой бетона и последующее его высушивание. При этом проявляется также совокупное действие физических и химических факторов агрессии. Основная причина разрушения в данном случае кроется в действии преимущественно физических факторов, которые вызывают оседание солей агрессивной среды в порах цементного камня и их кристаллизацию, сопровождающуюся значительными объемными деформациями.
Повышение сульфатостойкости цементов, которое наблюдается при замене С3А на C4AF, увеличении количества стекловидного С3А за счет кристаллического С3А, введении активных минеральных добавок и пропаривании объясняется образованием гидрогранатов, устойчивых к действию сульфатов. Установлено, что с повышением температуры возможны более сильные разрушения.
Пропаривание несколько улучшает, а запаривание в автоклаве значительно повышает сульфатостойкость. Проводились исследования, в которых устанавливалось время, необходимое для того, чтобы наступало расширение при твердении в сульфатных растворах цементных образцов состава 1:10, предварительно твердевших в течение 24 ч в воде, а также при обработке насыщенным паром при атмосферном и повышенном давлении.
Эти данные свидетельствуют о благоприятном влиянии тепловлажностной обработки на сульфатостойкость, так как при автоклавной обработке гидроксид кальиия цемента реагирует с кремнеземом, содержащимся в заполнителях бетона; при карбонатном заполнителе тепло-влажностная обработка не повышает сульфатостойкость. Автоклавная обработка способствует также кристаллизации более стойких гидросиликатов кальция повышенной основности, а также образованию в результате гидратации клинкерного стекла гидрогранатов, отличающихся высокой сульфатостойкостью. При этом следует учитывать, однако, что тепловлажностная обработка обычно не способствует повышению морозостойкости цементного камня.
Относительно низкую сульфатостойкость можно повысить введением золы-уноса. Сульфатостойкие цементы обладают по сравнению с обычным повышенной сульфатостойкостью и пониженной экзотермией при замедленной интенсивности твердения в начальные сроки.
Цементная промышленность выпускает сульфатостойкие цементы, которые по вещественному составу подразделяются на сульфатостойкий портландцемент, сульфатостойкий портландцемент с минеральными добавками, сульфатостойкий шлакопортландцемент. Чтобы определить пригодность активных минеральных добавок для получения сульфатостойких портландцементов, измеряют расширение образцов цемента с исследуемой добавкой, твердевшего в агрессивных средах.
По механической прочности цементы подразделяются на марки: 300, 400 и 500. Наибольшим пределом прочности при изгибе — 6,0 МПа — обладает сульфатостойкий портландцемент с минеральными добавками марки 500. Сульфатостойкий шлакопортландцемент характеризуется более высоким коэффициентом коррозионной стойкости.
Сульфатостойкие портландцемента характеризуются более низким выделением тепла при гидратации и применяются, главным образом, в массивных элементах
гидротехнических сооружений, где требуется пониженная экзотермия. В некоторых странах выпускаются специальные низкотермичные цементы; у нас сульфатостойкие портландцемента являются и низкотермичными, поскольку содержание в них наиболее «термичных» клинкерных фаз — С3А и алита ограничивают за счет соответствующего увеличения количества белита и алюоферрита кальция.
Объем производства этих видов цемента ограничен в связи с тем, что на большинстве цементных заводов нет глинистого компонента с низким содержанием глинозема, при котором в процессе обжига на беззольном топливе можно получать клинкер, содержащий менее 5% 3СаО-Аl2O3. Сложность задачи получения сульфатостойкого клинкера состоит еще в том, что в нем ограничивается и содержание C4AF, так что количество оксида железа в клинкере должно быть также умеренным.
Удельная поверхность цемента должна быть обычной (2500—3000 см2/г). Следует обеспечить получение цементного камня, отличающегося пониженной усадкой, а также высокой плотностью и водонепроницаемостью и соответственно повышенной морозостойкостью и сульфатостойкостью. Заметное влияние на повышение морозостойкости сульфатостойких портландцементов при испытании в бетоне оказывают длительность предварительного твердения до начала испытаний, значение В/Ц и удельный расход цемента. А. М. Подвальный, развивая представления о морозном разрушении бетона, показал, что увеличение объема цементного камня в бетоне приводит к повышению его морозостойкости.
В особо суровых условиях попеременного замораживания и оттаивания в морской воде при большой частоте циклов для достижения высокой морозостойкости в состав цемента или бетона вводят добавки. Это поверхностно-активные вещества: сульфитно-дрожжевая бражка, мылонафт, смола нейтрализованная воздухововлекающая (СНВ), 50%-ная кремнийорганическая эмульсия ГКЖ-94 и др. При испытании пропаренных образцов бетона на сульфатостойком портландцементе в суровых условиях Баренцева моря были получены весьма благоприятные результаты при введении в его состав 0,01—0,05% СНВ от массы цемента. Аналогичный эффект получен в тех же условиях агрессии при применении 0,04—0,08% добавки ГКЖ-94. Особо высокая морозостойкость достигается при комплексных добавках СДБ и ГКЖ-94, СДБ и СНВ.
Сульфатостойкий портландцемент предназначается для бетонных и железобетонных конструкций наружных зон гидротехнических и других сооружений, работающих в условиях сульфатной агрессии, при систематическом многократном попеременном замораживании и оттаивании либо увлажнении и высыхании. Для подводных частей морских и океанских сооружений технически более рационально и экономично применять сульфатостойкий шлакопортландцемент. Нормативными документами допускается применение сульфатостойкого портландцемента в бетонах различной плотности для напорных и безнапорных сооружений при различной степени фильтрации грунта и агрессивности жидкой среды, характеризуемой высокой концентрацией ионов SO4-.